The final exam is rapidly

reviewing. The following questions are can earn up to 25 Pts just by studying a separate paper. **DUE AT TIME**

approaching!! It's already time to start meant to be a review of the early chapters. You early! Show all work in neat detailed form on OF FINAL (Tues. Dec 10 9:00-10:50 a.m.)

1. Consider the following reaction between mercury(II) chloride and oxalate ion:

$$2 \text{HgCl}_2(aq) + \text{C}_2 \text{O}_4^{2-} \rightarrow 2 \text{Cl}^-(aq) + 2 \text{CO}_2(g) + \text{Hg}_2 \text{Cl}_2(s)$$

The initial rate of this reaction was determined for several concentrations of HgCl₂ and C₂O₄²⁻, and the following rate data were obtained:

Experiment	[HgCl ₂] (M)	$[C_2O_4^{2-}](M)$	Rate (M/s)
1	0.105	0.15	1.8 x 10 ⁻⁵
2	0.105	0.30	7.1 x 10 ⁻⁵
3	0.052	0.30	3.5×10^{-5}
4	0.052	0.15	8.9 x 10 ⁻⁶

- a) What is the rate law for this reaction?
- b) What is the value of the rate constant?
- c) What is the reaction rate when the concentration of $HgCl_2$ is 0.080 M and that of $C_2O_4^{2-}$ is 0.10 M if the temperature is the same as in the above experiments?
- 2. The first-order rate constant for the decomposition of a certain antibiotic in water at 20°C is 1.65 yr⁻¹.
- (a) If a 6.0×10^{-3} M solution of the antibiotic is stored at 20° C, what will its concentration be after 3 months? (b) After 1 year? (c) How long will it take for the concentration of the solution to drop to 1.0×10^{-3} M? (d) What is the half-life of the antibiotic solution?
- 3. What is the molecularity (uni, bi, or ter) of each of the following elementary steps (of various reactions). Write the rate law for each step.
- (a) $N_2O(g) + Cl(g) \rightarrow N_2(g) + ClO(g)$
- (b) $Cl_2(g) \rightarrow 2Cl(g)$
- (c) $NO(g) + Cl_2(g) \rightarrow NOCl_2(g)$
- 4. For the reaction $I_2(g) + Br_2(g) \Leftrightarrow 2IBr(g)$, $K_c = 280$ at $150^{\circ}C$. Suppose that 0.500 mol IBr in a 1.00 L flask is allowed to reach equilibrium at equilibrium at $150^{\circ}C$. What are the equilibrium concentrations of IBr, I_2 , and Br_2 ?
- 5. Methanol, CH₃OH, can be made by the reaction of CO with H₂(g):

$$CO(g) + 2H_2(g) \Leftrightarrow CH_3OH(g)$$

- (a) Use thermochemical data in your textbook's Appendices to calculate ΔH^{o} for this reaction.
- (b) In order to maximized the equilibrium yield of methanol, would you use a high or low temperature?
- (c) Assuming equal pressures of CO and H₂, how would the conversion of the gas mixture to methanol vary with total pressure?
- 6. Complete the following table by calculating the missing entries. In each case, indicate whether the solution is acidic or basic.

$[H^+]$	[OH ⁻]	рН	рОН	acidic or basic?
6.4 x 10 ⁻⁶ M				
	_			
	$8.8 \times 10^{-5} M$			
		7.5		
			12.9	

- 7. Predict whether aqueous solutions of the following substances are acidic, basic, or neutral and write hydrolysis equations for the acidic and basic solutions.
- (a) CsBr; (b) Al(NO₃)₃; (c) KCN; (d) CH₃NH₃Cl; (e) KHSO₄.
- 8. Determine the pH of each of the following solutions (K_a and K_b values can be found in the appendices of your textbook): (a) 0.045 M hypochlorous acid; (b) 0.0068 M phenol; (c) 0.080 M hydroxylamine.
- 9. Ephedrine, a central nervous stimulant, is used in nasal sprays as decongestant. This compound is a weak organic base:

$$C_{10}H_{15}ON(aq) + H_2O(1) \Leftrightarrow C_{10}H_{15}NOH^{+}(aq) + OH^{-}(aq)$$

 K_b has the value of 1.4 x 10^{-4} . What pH would you expect for a 0.035 M solution of ephedrine, assuming that no other substances are present? What is the value of pK_a for the conjugate acid of ephedrine?

- 10. A buffer is prepared by adding 5.0 g of ammonia, NH₃, and 20.0 g of ammonium chloride, NH₄Cl, to enough water to form 2.50 L of solution. (a) What is the pH of the buffer? (b) Write the complete ionic equation for the reaction that occurs when a few drops of nitric acid are added to the buffer. (c) Write the complete ionic equation for the reaction that occurs when a few drops of potassium hydroxide solution are added to the buffer.
- 11. A 20.0 mL sample of 0.200 M HBr solution is titrated with 0.200 M NaOH solution. Calculate the pH of the solution after the following volumes of base have been added: (a) 15.0 mL; (b) 19.9 mL; (c) 20.0 mL; (d) 20.1 mL; (e) 35.0 mL.
- 12. A 50.0 mL sample of 0.150 M acetic acid, HC₂H₃O₂, is titrated with 0.150 M NaOH solution. Calculate the pH after the following volumes of base have been added: (a) 0 mL; (b) 25 mL; (c) 49 mL; (d) 50.0 mL; (e) 75.0 mL.
- 13. Calculate the solubility of CaF_2 in grams per liter in (a) pure water; (b) 0.15 M KF solution; (c) 0.080 M $Ca(NO_3)_2$ solution. (You will have to look up the K_{sp} value of CaF_2)
- 14. (a) Will Mn(OH)₂ precipitate from solution if the pH of a 0.050 M solution of MnCl₂ is adjusted to 8.0? (b) Will Ag₂SO₄ precipitate when 100 mL of 0.010 M AgNO₃ is mixed with 20 mL of 5.0 x 10⁻² M Na₂SO₄ solution?
- 15. Be sure to study and review Thermodynamic (Chapter 18), Electrochemistry (Chapter 19), and Nuclear Chemistry (Chapter 20).AND....REMEMBER STUDY HARD FOR MY RETIREMENT!!!